Properly addressing the discretization process of continuos valued features is an important problem during decision tree learning. This paper describes four multi-interval discreti...
Signals in response to time-localized events of a common phenomenon tend to exhibit a common shape, but with variable time scale, amplitude, and delay across trials in many domain...
Dmitriy A. Katz-Rogozhnikov, Kush R. Varshney, Ale...
Abstract. Many reinforcement learning domains are highly relational. While traditional temporal-difference methods can be applied to these domains, they are limited in their capaci...
Trevor Walker, Lisa Torrey, Jude W. Shavlik, Richa...
We believe that AI programs written for discovery tasks will need to simultaneously employ a variety of reasoning techniques such as induction, abduction, deduction, calculation an...
Abstract. In this paper, we review the task of inductive process modeling, which uses domain knowledge to compose explanatory models of continuous dynamic systems. Next we discuss ...
Will Bridewell, Pat Langley, Steve Racunas, Stuart...