Sciweavers

91 search results - page 4 / 19
» Kernel Dimensionality Reduction for Supervised Learning
Sort
View
ICIP
2005
IEEE
15 years 12 months ago
Nonlinear dimensionality reduction for classification using kernel weighted subspace method
We study the use of kernel subspace methods that learn low-dimensional subspace representations for classification tasks. In particular, we propose a new method called kernel weigh...
Guang Dai, Dit-Yan Yeung
89
Voted
ICDM
2003
IEEE
153views Data Mining» more  ICDM 2003»
15 years 3 months ago
Dimensionality Reduction Using Kernel Pooled Local Discriminant Information
We study the use of kernel subspace methods for learning low-dimensional representations for classification. We propose a kernel pooled local discriminant subspace method and com...
Peng Zhang, Jing Peng, Carlotta Domeniconi
117
Voted
PSIVT
2009
Springer
400views Multimedia» more  PSIVT 2009»
15 years 4 months ago
Local Image Descriptors Using Supervised Kernel ICA
PCA-SIFT is an extension to SIFT which aims to reduce SIFT’s high dimensionality (128 dimensions) by applying PCA to the gradient image patches. However PCA is not a discriminati...
Masaki Yamazaki, Sidney Fels
ICCV
2009
IEEE
16 years 3 months ago
Dimensionality Reduction and Principal Surfaces via Kernel Map Manifolds
We present a manifold learning approach to dimensionality reduction that explicitly models the manifold as a mapping from low to high dimensional space. The manifold is represen...
Samuel Gerber, Tolga Tasdizen, Ross Whitaker
106
Voted
NIPS
2008
14 years 11 months ago
DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification
Probabilistic topic models have become popular as methods for dimensionality reduction in collections of text documents or images. These models are usually treated as generative m...
Simon Lacoste-Julien, Fei Sha, Michael I. Jordan