Multiple Kernel Learning (MKL) can be formulated as a convex-concave minmax optimization problem, whose saddle point corresponds to the optimal solution to MKL. Most MKL methods e...
Zenglin Xu, Rong Jin, Shenghuo Zhu, Michael R. Lyu...
It is well-known that supervised learning techniques such as linear discriminant analysis (LDA) often suffer from the so called small sample size problem when apply to solve face ...
Jie Wang, Konstantinos N. Plataniotis, Anastasios ...
—In kernel based regression techniques (such as Support Vector Machines or Least Squares Support Vector Machines) it is hard to analyze the influence of perturbed inputs on the ...
We propose a novel method of dimensionality reduction for supervised learning. Given a regression or classification problem in which we wish to predict a variable Y from an expla...
Kenji Fukumizu, Francis R. Bach, Michael I. Jordan
In this paper we address the problem of classifying images, by exploiting global features that describe color and illumination properties, and by using the statistical learning pa...