We provide a novel view of learning an approximate model of a partially observable environment from data and present a simple implemenf the idea. The learned model abstracts away ...
This paper proposes a general learning framework for a class of problems that require learning over latent intermediate representations. Many natural language processing (NLP) dec...
Ming-Wei Chang, Dan Goldwasser, Dan Roth, Vivek Sr...
The k-Nearest Neighbors algorithm can be easily adapted to classify complex objects (e.g. sets, graphs) as long as a proper dissimilarity function is given over an input space. Bo...
Adam Woznica, Alexandros Kalousis, Melanie Hilario
We propose an active vision system for object acquisition. The core of our approach is a reinforcement learning module which learns a strategy to scan an object. The agent moves a...
Gabriele Peters, Claus-Peter Alberts, Markus Bries...