Transfer learning aims at reusing the knowledge in some source tasks to improve the learning of a target task. Many transfer learning methods assume that the source tasks and the ...
Bin Cao, Sinno Jialin Pan, Yu Zhang, Dit-Yan Yeung...
Abstract--Learning multiple related tasks from data simultaneously can improve predictive performance relative to learning these tasks independently. In this paper we propose a nov...
Jean Baptiste Faddoul, Boris Chidlovskii, Fabien T...
Multi-label learning deals with data associated with multiple labels simultaneously. Previous work on multi-label learning assumes that for each instance, the "full" lab...
Several recently-proposed architectures for highperformance
object recognition are composed of two main
stages: a feature extraction stage that extracts locallyinvariant
feature...
Koray Kavukcuoglu, Marc'Aurelio Ranzato, Rob Fergu...
The use of compression algorithms in machine learning tasks such as clustering and classification has appeared in a variety of fields, sometimes with the promise of reducing probl...