We describe semi-Markov conditional random fields (semi-CRFs), a conditionally trained version of semi-Markov chains. Intuitively, a semiCRF on an input sequence x outputs a "...
In this paper we propose a novel general framework for unsupervised model adaptation. Our method is based on entropy which has been used previously as a regularizer in semi-superv...
Ariya Rastrow, Frederick Jelinek, Abhinav Sethy, B...
Despite the widespread use of BM25, there have been few studies examining its effectiveness on a document description over single and multiple field combinations. We determine t...
In this paper we propose a novel algorithm for multi-task learning with boosted decision trees. We learn several different learning tasks with a joint model, explicitly addressing...
Olivier Chapelle, Pannagadatta K. Shivaswamy, Srin...
This paper explores the use of Bayesian online classifiers to classify text documents. Empirical results indicate that these classifiers are comparable with the best text classifi...