We study the problem of learning parity functions that depend on at most k variables (kparities) attribute-efficiently in the mistake-bound model. We design a simple, deterministi...
In this article, we extend a local prototype-based learning model by active learning, which gives the learner the capability to select training samples during the model adaptation...
Frank-Michael Schleif, Barbara Hammer, Thomas Vill...
Many complex, real world phenomena are difficult to study directly using controlled experiments. Instead, the use of computer simulations has become commonplace as a feasible alte...
Ivo Couckuyt, Dirk Gorissen, Hamed Rouhani, Eric L...
We consider a model of learning Boolean functions from examples generated by a uniform random walk on {0, 1}n . We give a polynomial time algorithm for learning decision trees and...
Nader H. Bshouty, Elchanan Mossel, Ryan O'Donnell,...
Learning a good ranking function plays a key role for many applications including the task of (multimedia) information retrieval. While there are a few rank learning methods availa...