Sciweavers

72 search results - page 4 / 15
» Margin-based discriminant dimensionality reduction for visua...
Sort
View
ICASSP
2008
IEEE
15 years 4 months ago
A study of using locality preserving projections for feature extraction in speech recognition
This paper presents a new approach to feature analysis in automatic speech recognition (ASR) based on locality preserving projections (LPP). LPP is a manifold based dimensionality...
Yun Tang, Richard Rose
100
Voted
TSMC
2008
182views more  TSMC 2008»
14 years 9 months ago
Incremental Linear Discriminant Analysis for Face Recognition
Abstract--Dimensionality reduction methods have been successfully employed for face recognition. Among the various dimensionality reduction algorithms, linear (Fisher) discriminant...
Haitao Zhao, Pong Chi Yuen
CVPR
2010
IEEE
15 years 5 months ago
Sufficient Dimensionality Reduction for Visual Sequence Classification
When classifying high-dimensional sequence data, traditional methods (e.g., HMMs, CRFs) may require large amounts of training data to avoid overfitting. In such cases dimensional...
Alex Shyr, Raquel Urtasun, Michael Jordan
NIPS
2004
14 years 11 months ago
Two-Dimensional Linear Discriminant Analysis
Linear Discriminant Analysis (LDA) is a well-known scheme for feature extraction and dimension reduction. It has been used widely in many applications involving high-dimensional d...
Jieping Ye, Ravi Janardan, Qi Li
CIARP
2006
Springer
15 years 1 months ago
A Theoretical Comparison of Two Linear Dimensionality Reduction Techniques
Abstract. A theoretical analysis for comparing two linear dimensionality reduction (LDR) techniques, namely Fisher's discriminant (FD) and Loog-Duin (LD) dimensionality reduci...
Luis Rueda, Myriam Herrera