Learning undirected graphical models such as Markov random fields is an important machine learning task with applications in many domains. Since it is usually intractable to learn...
Arthur Asuncion, Qiang Liu, Alexander T. Ihler, Pa...
Abstract. Natural scenes consist of a wide variety of stochastic patterns. While many patterns are represented well by statistical models in two dimensional regions as most image s...
In this paper, we present a Bayesian framework for the fully automatic tracking of a variable number of interacting targets using a fixed camera. This framework uses a joint multi...
Kevin Smith, Daniel Gatica-Perez, Jean-Marc Odobez
This paper studies a variational Bayesian unmixing algorithm for hyperspectral images based on the standard linear mixing model. Each pixel of the image is modeled as a linear com...
Olivier Eches, Nicolas Dobigeon, Jean-Yves Tourner...
This paper proposes a new approach to describe the salient contours in cluttered scenes. No need to do the preprocessing, such as edge detection, we directly use a set of random s...