Policy gradient methods for reinforcement learning avoid some of the undesirable properties of the value function approaches, such as policy degradation (Baxter and Bartlett, 2001...
Evan Greensmith, Peter L. Bartlett, Jonathan Baxte...
Abstract. Many reinforcement learning domains are highly relational. While traditional temporal-difference methods can be applied to these domains, they are limited in their capaci...
Trevor Walker, Lisa Torrey, Jude W. Shavlik, Richa...
Bayesian Reinforcement Learning has generated substantial interest recently, as it provides an elegant solution to the exploration-exploitation trade-off in reinforcement learning...
We study the problem of dynamic spectrum sensing and access in cognitive radio systems as a partially observed Markov decision process (POMDP). A group of cognitive users cooperati...
Jayakrishnan Unnikrishnan, Venugopal V. Veeravalli
We propose a novel approach to optimize Partially Observable Markov Decisions Processes (POMDPs) defined on continuous spaces. To date, most algorithms for model-based POMDPs are ...
Josep M. Porta, Nikos A. Vlassis, Matthijs T. J. S...