Sciweavers

771 search results - page 42 / 155
» Markov Decision Processes with Arbitrary Reward Processes
Sort
View
NIPS
2001
15 years 3 months ago
Variance Reduction Techniques for Gradient Estimates in Reinforcement Learning
Policy gradient methods for reinforcement learning avoid some of the undesirable properties of the value function approaches, such as policy degradation (Baxter and Bartlett, 2001...
Evan Greensmith, Peter L. Bartlett, Jonathan Baxte...
ILP
2007
Springer
15 years 8 months ago
Building Relational World Models for Reinforcement Learning
Abstract. Many reinforcement learning domains are highly relational. While traditional temporal-difference methods can be applied to these domains, they are limited in their capaci...
Trevor Walker, Lisa Torrey, Jude W. Shavlik, Richa...
NIPS
2007
15 years 3 months ago
Bayes-Adaptive POMDPs
Bayesian Reinforcement Learning has generated substantial interest recently, as it provides an elegant solution to the exploration-exploitation trade-off in reinforcement learning...
Stéphane Ross, Brahim Chaib-draa, Joelle Pi...
CORR
2008
Springer
189views Education» more  CORR 2008»
15 years 1 months ago
Algorithms for Dynamic Spectrum Access with Learning for Cognitive Radio
We study the problem of dynamic spectrum sensing and access in cognitive radio systems as a partially observed Markov decision process (POMDP). A group of cognitive users cooperati...
Jayakrishnan Unnikrishnan, Venugopal V. Veeravalli
110
Voted
JMLR
2006
116views more  JMLR 2006»
15 years 1 months ago
Point-Based Value Iteration for Continuous POMDPs
We propose a novel approach to optimize Partially Observable Markov Decisions Processes (POMDPs) defined on continuous spaces. To date, most algorithms for model-based POMDPs are ...
Josep M. Porta, Nikos A. Vlassis, Matthijs T. J. S...