Performing data mining tasks in streaming data is considered a challenging research direction, due to the continuous data evolution. In this work, we focus on the problem of clust...
Maria Kontaki, Apostolos N. Papadopoulos, Yannis M...
Clustering streaming data requires algorithms which are capable of updating clustering results for the incoming data. As data is constantly arriving, time for processing is limited...
Philipp Kranen, Ira Assent, Corinna Baldauf, Thoma...
Regression problems on massive data sets are ubiquitous in many application domains including the Internet, earth and space sciences, and finances. In many cases, regression algori...
— Quantiles are very useful in characterizing the data distribution of an evolving dataset in the process of data mining or network monitoring. The method of Stochastic Approxima...
Data streams are usually generated in an online fashion characterized by huge volume, rapid unpredictable rates, and fast changing data characteristics. It has been hence recogniz...
Xuan Hong Dang, Wee Keong Ng, Kok-Leong Ong, Vince...