Domain adaptation solves a learning problem in a target domain by utilizing the training data in a different but related source domain. Intuitively, discovering a good feature rep...
Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, Qi...
We present an algorithm, Hierarchical ISOmetric SelfOrganizing Map (H-ISOSOM), for a concise, organized manifold representation of complex, non-linear, large scale, high-dimension...
This paper presents a statistical model for textures that uses a non-negative decomposition on a set of local atoms learned from an exemplar. This model is described by the varianc...
We propose an active vision system for object acquisition. The core of our approach is a reinforcement learning module which learns a strategy to scan an object. The agent moves a...
Gabriele Peters, Claus-Peter Alberts, Markus Bries...
The performance of many supervised and unsupervised learning algorithms is very sensitive to the choice of an appropriate distance metric. Previous work in metric learning and ada...