Background: Clustering is a popular data exploration technique widely used in microarray data analysis. Most conventional clustering algorithms, however, generate only one set of ...
Background: Missing values frequently pose problems in gene expression microarray experiments as they can hinder downstream analysis of the datasets. While several missing value i...
Johannes Tuikkala, Laura Elo, Olli Nevalainen, Ter...
There are many algorithms to cluster sample data points based on nearness or a similarity measure. Often the implication is that points in different clusters come from different u...
Edward R. Dougherty, Junior Barrera, Marcel Brun, ...
Motivation: Clustering technique is used to find groups of genes that show similar expression patterns under multiple experimental conditions. Nonetheless, the results obtained by...
Dae-Won Kim, Ki Young Lee, Kwang H. Lee, Doheon Le...
Most clustering algorithms are partitional in nature, assigning each data point to exactly one cluster. However, several real world datasets have inherently overlapping clusters i...