We present a method for constructing ensembles from libraries of thousands of models. Model libraries are generated using different learning algorithms and parameter settings. For...
Rich Caruana, Alexandru Niculescu-Mizil, Geoff Cre...
This paper exploits recent developments in sparse approximation and compressive sensing to efficiently perform localization in a sensor network. We introduce a Bayesian framework...
Volkan Cevher, Petros Boufounos, Richard G. Barani...
—In a sensor network, in practice, the communication among sensors is subject to: 1) errors that can cause failures of links among sensors at random times; 2) costs; and 3) const...
This paper presents a new method for the selection of the two hyperparameters of Least Squares Support Vector Machine (LS-SVM) approximators with Gaussian Kernels. The two hyperpar...
Amaury Lendasse, Yongnan Ji, Nima Reyhani, Michel ...
We consider the general, widely applicable problem of selecting from n real-valued random variables a subset of size m of those with the highest means, based on as few samples as ...