Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is perfor...
Gert R. G. Lanckriet, Nello Cristianini, Peter L. ...
Abstract a paradigm of modern Machine Learning (ML) which uses rewards and punishments to guide the learning process. One of the central ideas of RL is learning by “direct-online...
Significant changes in the instance distribution or associated cost function of a learning problem require one to reoptimize a previously-learned classifier to work under new cond...
Chris Bourke, Kun Deng, Stephen D. Scott, Robert E...
Learning Deterministic Finite Automata (DFA) is a hard task that has been much studied within machine learning and evolutionary computation research. This paper presents a new met...
The growth of the web has directly influenced the increase in the availability of relational data. One of the key problems in mining such data is computing the similarity between o...
Pradeep Muthukrishnan, Dragomir R. Radev, Qiaozhu ...