Sciweavers

69 search results - page 7 / 14
» PAC-Bayesian Policy Evaluation for Reinforcement Learning
Sort
View
97
Voted
GECCO
2006
Springer
133views Optimization» more  GECCO 2006»
15 years 3 months ago
On-line evolutionary computation for reinforcement learning in stochastic domains
In reinforcement learning, an agent interacting with its environment strives to learn a policy that specifies, for each state it may encounter, what action to take. Evolutionary c...
Shimon Whiteson, Peter Stone
IJCAI
2007
15 years 1 months ago
Heuristic Selection of Actions in Multiagent Reinforcement Learning
This work presents a new algorithm, called Heuristically Accelerated Minimax-Q (HAMMQ), that allows the use of heuristics to speed up the wellknown Multiagent Reinforcement Learni...
Reinaldo A. C. Bianchi, Carlos H. C. Ribeiro, Anna...
154
Voted
ILP
2007
Springer
15 years 5 months ago
Building Relational World Models for Reinforcement Learning
Abstract. Many reinforcement learning domains are highly relational. While traditional temporal-difference methods can be applied to these domains, they are limited in their capaci...
Trevor Walker, Lisa Torrey, Jude W. Shavlik, Richa...
AAAI
2012
13 years 2 months ago
Kernel-Based Reinforcement Learning on Representative States
Markov decision processes (MDPs) are an established framework for solving sequential decision-making problems under uncertainty. In this work, we propose a new method for batchmod...
Branislav Kveton, Georgios Theocharous
ATAL
2008
Springer
15 years 1 months ago
Sigma point policy iteration
In reinforcement learning, least-squares temporal difference methods (e.g., LSTD and LSPI) are effective, data-efficient techniques for policy evaluation and control with linear v...
Michael H. Bowling, Alborz Geramifard, David Winga...