Sciweavers

134 search results - page 7 / 27
» Random Projections for Manifold Learning
Sort
View
BMVC
2010
14 years 11 months ago
Iterative Hyperplane Merging: A Framework for Manifold Learning
We present a framework for the reduction of dimensionality of a data set via manifold learning. Using the building blocks of local hyperplanes we show how a global manifold can be...
Harry Strange, Reyer Zwiggelaar
ALT
2007
Springer
15 years 10 months ago
Learning Kernel Perceptrons on Noisy Data Using Random Projections
In this paper, we address the issue of learning nonlinearly separable concepts with a kernel classifier in the situation where the data at hand are altered by a uniform classific...
Guillaume Stempfel, Liva Ralaivola
CVPR
2007
IEEE
16 years 3 months ago
Adaptive Distance Metric Learning for Clustering
A good distance metric is crucial for unsupervised learning from high-dimensional data. To learn a metric without any constraint or class label information, most unsupervised metr...
Jieping Ye, Zheng Zhao, Huan Liu
ICCV
2009
IEEE
16 years 6 months ago
Dimensionality Reduction and Principal Surfaces via Kernel Map Manifolds
We present a manifold learning approach to dimensionality reduction that explicitly models the manifold as a mapping from low to high dimensional space. The manifold is represen...
Samuel Gerber, Tolga Tasdizen, Ross Whitaker
ICIP
2007
IEEE
15 years 5 months ago
Unsupervised Nonlinear Manifold Learning
This communication deals with data reduction and regression. A set of high dimensional data (e.g., images) usually has only a few degrees of freedom with corresponding variables t...
Matthieu Brucher, Christian Heinrich, Fabrice Heit...