Reinforcement learning problems are commonly tackled with temporal difference methods, which attempt to estimate the agent's optimal value function. In most real-world proble...
1 Reinforcement learning has become a widely used methodology for creating intelligent agents in a wide range of applications. However, its performance deteriorates in tasks with s...
Standard Reinforcement Learning (RL) aims to optimize decision-making rules in terms of the expected return. However, especially for risk-management purposes, other criteria such ...
Abstract— Continuous action sets are used in many reinforcement learning (RL) applications in robot control since the control input is continuous. However, discrete action sets a...
Akihiko Yamaguchi, Jun Takamatsu, Tsukasa Ogasawar...
—This study attempts to make a compact humanoid robot acquire a giant-swing motion without any robotic models by using reinforcement learning; only the interaction with environme...