Classification problems in critical applications such as health care or security often require very high reliability because of the high costs of errors. In order to achieve this r...
Linear support vector machines (SVM) are useful for classifying large-scale sparse data. Problems with sparse features are common in applications such as document classification a...
The choice of the kernel function which determines the mapping between the input space and the feature space is of crucial importance to kernel methods. The past few years have se...
We propose a new stopping condition for a Support Vector Machine (SVM) solver which precisely reflects the objective of the Leave-OneOut error computation. The stopping condition ...
The goal of feature induction is to automatically create nonlinear combinations of existing features as additional input features to improve classification accuracy. Typically, no...