We study distribution-dependent, data-dependent, learning in the limit with adversarial disturbance. We consider an optimization-based approach to learning binary classifiers from...
Most existing subspace analysis-based tracking algorithms utilize a flattened vector to represent a target, resulting in a high dimensional data learning problem. Recently, subspa...
Xi Li, Weiming Hu, Zhongfei Zhang, Xiaoqin Zhang, ...
This paper deals with estimation of dense optical flow
and ego-motion in a generalized imaging system by exploiting
probabilistic linear subspace constraints on the flow.
We dea...
Richard Roberts (Georgia Institute of Technology),...
The Neural Gas (NG) is a Vector Quantization technique where a set of prototypes self organize to represent the topology structure of the data. The learning algorithm of the Neural...
In this paper we propose a weakly supervised learning algorithm for appearance models based on the minimum description length (MDL) principle. From a set of training images or volu...
Georg Langs, Rene Donner, Philipp Peloschek, Horst...