Sciweavers

33 search results - page 1 / 7
» Sequential Bayesian Kernel Regression
Sort
View
94
Voted
NIPS
2003
14 years 11 months ago
Sequential Bayesian Kernel Regression
We propose a method for sequential Bayesian kernel regression. As is the case for the popular Relevance Vector Machine (RVM) [10, 11], the method automatically identifies the num...
Jaco Vermaak, Simon J. Godsill, Arnaud Doucet
ESANN
2004
14 years 11 months ago
Sparse Bayesian kernel logistic regression
In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based MacKay's evidence approximation. The model is re-p...
Gavin C. Cawley, Nicola L. C. Talbot
NIPS
2008
14 years 11 months ago
Bayesian Kernel Shaping for Learning Control
In kernel-based regression learning, optimizing each kernel individually is useful when the data density, curvature of regression surfaces (or decision boundaries) or magnitude of...
Jo-Anne Ting, Mrinal Kalakrishnan, Sethu Vijayakum...
ICCV
2009
IEEE
14 years 7 months ago
Bayesian Poisson regression for crowd counting
Poisson regression models the noisy output of a counting function as a Poisson random variable, with a log-mean parameter that is a linear function of the input vector. In this wo...
Antoni B. Chan, Nuno Vasconcelos
94
Voted
NIPS
2004
14 years 11 months ago
Learning Gaussian Process Kernels via Hierarchical Bayes
We present a novel method for learning with Gaussian process regression in a hierarchical Bayesian framework. In a first step, kernel matrices on a fixed set of input points are l...
Anton Schwaighofer, Volker Tresp, Kai Yu