The success of tensor-based subspace learning depends heavily on reducing correlations along the column vectors of the mode-k flattened matrix. In this work, we study the problem ...
Shuicheng Yan, Dong Xu, Stephen Lin, Thomas S. Hua...
Learning general functional dependencies is one of the main goals in machine learning. Recent progress in kernel-based methods has focused on designing flexible and powerful input...
Ioannis Tsochantaridis, Thomas Hofmann, Thorsten J...
We initiate a study comparing effectiveness of the transformed spaces learned by recently proposed supervised, and semisupervised metric learning algorithms to those generated by ...
Paramveer S. Dhillon, Partha Pratim Talukdar, Koby...
We introduce a boosting framework to solve a classification problem with added manifold and ambient regularization costs. It allows for a natural extension of boosting into both s...
Nicolas Loeff, David A. Forsyth, Deepak Ramachandr...
This paper introduces a new variety of learning classifier system (LCS), called MILCS, which utilizes mutual information as fitness feedback. Unlike most LCSs, MILCS is specifical...