Sciweavers

759 search results - page 26 / 152
» Structured Learning with Approximate Inference
Sort
View
JMLR
2010
202views more  JMLR 2010»
14 years 4 months ago
Learning the Structure of Deep Sparse Graphical Models
Deep belief networks are a powerful way to model complex probability distributions. However, it is difficult to learn the structure of a belief network, particularly one with hidd...
Ryan Prescott Adams, Hanna M. Wallach, Zoubin Ghah...
ICCV
1999
IEEE
15 years 11 months ago
A Dynamic Bayesian Network Approach to Figure Tracking using Learned Dynamic Models
The human figure exhibits complex and rich dynamic behavior that is both nonlinear and time-varying. However, most work on tracking and synthesizing figure motion has employed eit...
Vladimir Pavlovic, James M. Rehg, Tat-Jen Cham, Ke...
84
Voted
ICMCS
2009
IEEE
104views Multimedia» more  ICMCS 2009»
14 years 7 months ago
A variational multi-view learning framework and its application to image segmentation
The paper presents a novel multi-view learning framework based on variational inference. We formulate the framework as a graph representation in form of graph factorization: the g...
Zhenglong Li, Qingshan Liu, Hanqing Lu
ACL
2010
14 years 7 months ago
PCFGs, Topic Models, Adaptor Grammars and Learning Topical Collocations and the Structure of Proper Names
This paper establishes a connection between two apparently very different kinds of probabilistic models. Latent Dirichlet Allocation (LDA) models are used as "topic models&qu...
Mark Johnson
85
Voted
NIPS
2000
14 years 11 months ago
Structure Learning in Human Causal Induction
We use graphical models to explore the question of how people learn simple causal relationships from data. The two leading psychological theories can both be seen as estimating th...
Joshua B. Tenenbaum, Thomas L. Griffiths