Semi-supervised clustering uses a small amount of supervised data to aid unsupervised learning. One typical approach specifies a limited number of must-link and cannotlink constra...
We address the problem of temporal unusual event detection. Unusual events are characterized by a number of features (rarity, unexpectedness, and relevance) that limit the applica...
Dong Zhang, Daniel Gatica-Perez, Samy Bengio, Iain...
We consider the general problem of learning from both labeled and unlabeled data. Given a set of data points, only a few of them are labeled, and the remaining points are unlabele...
Fei Wang, Changshui Zhang, Helen C. Shen, Jingdong...
We introduce a novel machine learning framework based on recursive autoencoders for sentence-level prediction of sentiment label distributions. Our method learns vector space repr...
Richard Socher, Jeffrey Pennington, Eric H. Huang,...
We present a new and efficient semi-supervised training method for parameter estimation and feature selection in conditional random fields (CRFs). In real-world applications suc...