Abstract. Sparse signal models learned from data are widely used in audio, image, and video restoration. They have recently been generalized to discriminative image understanding t...
Julien Mairal, Marius Leordeanu, Francis Bach, Mar...
Compressed sensing(CS) suggests that a signal, sparse in some basis, can be recovered from a small number of random projections. In this paper, we apply the CS theory on sparse ba...
Dikpal Reddy, Aswin C. Sankaranarayanan, Volkan Ce...
Abstract-- Recovering or estimating the initial state of a highdimensional system can require a potentially large number of measurements. In this paper, we explain how this burden ...
Michael B. Wakin, Borhan Molazem Sanandaji, Tyrone...
Information embedding (IE) is the transmission of information within a host signal subject to a distortion constraint. There are two types of embedding methods, namely irreversibl...
Finding the sparsest solution for an under-determined linear system of equations D = s is of interest in many applications. This problem is known to be NP-hard. Recent work studie...