The problem of determining the appropriate number of components is important in finite mixture modeling for pattern classification. This paper considers the application of an unsu...
Unsupervised learning of linguistic structure is a difficult problem. A common approach is to define a generative model and maximize the probability of the hidden structure give...
We describe a pattern acquisition algorithm that learns, in an unsupervised fashion, a streamlined representation of linguistic structures from a plain natural-language corpus. Th...
Zach Solan, David Horn, Eytan Ruppin, Shimon Edelm...
In this paper, we present a novel network to separate mixtures of inputs that have been previously learned. A significant capability of the network is that it segments the componen...
A. Ravishankar Rao, Guillermo A. Cecchi, Charles C...
Autonomous systems which learn and utilize a limited
visual vocabulary have wide spread applications.
Enabling such systems to segment a set of cluttered scenes
into objects is ...
Chandra Kambhamettu, Dimitris N. Metaxas, Gowri So...