Free Online Productivity Tools
i2Speak
i2Symbol
i2OCR
iTex2Img
iWeb2Print
iWeb2Shot
i2Type
iPdf2Split
iPdf2Merge
i2Bopomofo
i2Arabic
i2Style
i2Image
i2PDF
iLatex2Rtf
Sci2ools

CALC

2001

Springer

2001

Springer

We show that recent results of Coppersmith, Boneh, Durfee and Howgrave-Graham actually apply in the more general setting of (partially) approximate common divisors. This leads us to consider the question of “fully” approximate common divisors, i.e. where both integers are only known by approximations. We explain the lattice techniques in both the partial and general cases. As an application of the partial approximate common divisor algorithm we show that a cryptosystem proposed by Okamoto actually leaks the private information directly from the public information in polynomial time. In contrast to the partial setting, our technique with respect to the general setting can only be considered heuristic, since we encounter the same “proof of algebraic independence” problem as a subset of the above authors have in previous papers. This problem is generally considered a (hard) problem in lattice theory, since in our case, as in previous cases, the method still works extremely reliabl...

Related Content

Added |
28 Jul 2010 |

Updated |
28 Jul 2010 |

Type |
Conference |

Year |
2001 |

Where |
CALC |

Authors |
Nick Howgrave-Graham |

Comments (0)