Sciweavers

361 search results - page 15 / 73
» MultiK-MHKS: A Novel Multiple Kernel Learning Algorithm
Sort
View
141
Voted
FOCM
2006
97views more  FOCM 2006»
15 years 1 months ago
Learning Rates of Least-Square Regularized Regression
This paper considers the regularized learning algorithm associated with the leastsquare loss and reproducing kernel Hilbert spaces. The target is the error analysis for the regres...
Qiang Wu, Yiming Ying, Ding-Xuan Zhou
FOCM
2008
140views more  FOCM 2008»
15 years 1 months ago
Online Gradient Descent Learning Algorithms
This paper considers the least-square online gradient descent algorithm in a reproducing kernel Hilbert space (RKHS) without explicit regularization. We present a novel capacity i...
Yiming Ying, Massimiliano Pontil
CVPR
2010
IEEE
15 years 10 months ago
Online-Batch Strongly Convex Multi Kernel Learning
Several object categorization algorithms use kernel methods over multiple cues, as they offer a principled approach to combine multiple cues, and to obtain state-of-theart perform...
Francesco Orabona, Jie Luo, Barbara Caputo
117
Voted
ICCV
2009
IEEE
16 years 6 months ago
Robust Fitting of Multiple Structures: The Statistical Learning Approach
We propose an unconventional but highly effective approach to robust fitting of multiple structures by using statistical learning concepts. We design a novel Mercer kernel for t...
Tat-Jun Chin, Hanzi Wang, David Suter
143
Voted
ML
2010
ACM
181views Machine Learning» more  ML 2010»
15 years 9 days ago
Decomposing the tensor kernel support vector machine for neuroscience data with structured labels
Abstract The tensor kernel has been used across the machine learning literature for a number of purposes and applications, due to its ability to incorporate samples from multiple s...
David R. Hardoon, John Shawe-Taylor